INSTITUTE OF CONTEMPORARY ART

nathan brandt + kendall clarke + cyndee moody + briana strickland

BACKGROUND

- typology: museum
- architect: diller scofidio + renfro (ds+r)
- structural engineer: new york city office of arup
- location: boston, massachusetts
- **completion date: 2006**
- area: 65,000 sf

THE ARCHITECTS

- elizabeth diller, ricardo scofidio, and charles renfro
- **founded in 1979**
- integrates architecture, the visual arts, and the performing arts
- perry dean rogers acted as associate architect

- located on harbor walk, a 47-mile long public walkway
- Pritzker family donated .75-acre site for civic use
- largest private development on south boston waterfront

- located on harbor walk, a 47-mile long public walkway
- Pritzker family donated .75-acre site for civic use
- largest private development on south boston waterfront

peak ground acceleration map - 2014

- harbor walk seen as civic surface
- extends up to form public space and wraps around the theater
- waterfront as asset and distraction

- ground level floor plan
- lobby, bookstore, dining, food prep, loading zone, art lab

- second level floor plan
- theater, theater support, offices, classrooms

- third level floor plan
- theater, offices

- fourth level floor plan
- galleries

STRUCTURE structural system

- steel as structural system
- easy to transport and assemble; cantilever

STRUCTURE

inverted triangular roof trusses

steel w section megatrusses

gallery floor trusses; w-tee chords, double angle webs

steel w section beams and columns with lateral bracing

foundation slab

piles, pile caps, and beam grillage

STRUCTURE revit analysis

- roof area load = 50 psf
- gallery floor area load = 100 psf
- member forces and moments

STRUCTURE foundation framing

STRUCTURE foundation system

- steel H-Piles
 - H 14 x 117
 - **■** 100 feet long
 - cathodic protection
- concrete pile caps and grillage

STRUCTURE soil type

- udorthents urban land soil
 - **2-20** feet of artificial fill
 - loamy soil
 - ~10% clay
 - ~40% silt
 - $\sim 50\%$ sand

	LEGEND
P	Glacial IIII
0.6	Sand and Gravel:
3	- Sit, sand, clay and organic material
(4)	Glacial till overlying Coastal Plain deposits.
Goes:	Sand and gravel overlying Coastal Plain deposits

STRUCTURE soil type

- steel h-piles on bedrock for higher bearing capacity
- water table at 3-5 feet + frost condition
 - stability concern for design

water table artificial fill

clayey sand

vertical bearing capacity: 2,000 psf lateral bearing pressure: 150 psf

bedrock

vertical bearing capacity: 12,000 psf lateral bearing pressure: 1,200 psf

STRUCTURE soil pressure

STRUCTURE wind load design

- 140 mph
 - horiztontal load: 31.1 psf windward corner of building
 - vertical load: -37.3 psf windward corner of roof

STRUCTURE seismic load design

- Zone 2A: 0.15
- **Occupancy factor: 1.0**
- Structure Response (Rw): 12 (moment resisting frame)

Alban

2014 Massachusetts Hazard

STRUCTURE multiframe analysis

- exterior bay
 - tributary area: 3,380 square feet
 - roof live load: 20 psf + roof snow load: 30 psf
 - floor live load: 100 psf

STRUCTURE multiframe analysis

- interior bay
 - tributary area: 3,380 square feet
 - roof live load: 20 psf + roof snow load: 30 psf
 - floor live load: 100 psf

STRUCTURE multiframe analysis

- south facade
 - wind load: 31.1 psf
 - east facade tributary area: 3,420 square feet

STRUCTURE load transfer

lateral force on eastern side would transfer load to exterior megatruss

STRUCTURE load transfer

floor load transfer

roof load transfer

REFERENCES

Boston Parks and Recreation Department. Appendix 1 Environmental Inventory and Analysis. Soils. Retrieved November 29, 2014, from http://www.cityofboston.gov/parks/pdfs/os7a_text.pdf.

Boston Parks and Recreation Department. City of Boston General Soils. Retrieved November 29, 2014, from http://www.cityofboston.gov/parks/pdfs/soil.pdf.

Commonwealth of Massachusetts. (2001). Structural Loads. Retrieved November 30, 2014, from http://earthquake.usgs.gov/earthquakes/states/massachusetts/hazards.php.

Diller, Scofidio, and Renfro. n.d. Institute of Contemporary Art. Retrieved from http://www.dsrny.com/#/projects/ica.

United States Department of Agriculture. (1989). Soil Survey of Norfolk and Suffolk Counties, Massachusetts. Retrieved November 30, 2014, from http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/massachusetts/MA616/0/norfolk.pdf.

n.d. Google Images. http://www.google.com/imghp?gws_rd=ssl.

[Graph illustration] Retrieved December 1, 2014, from http://1.bp.blogspot.com/-5TfYu3ie_8s/ULZX6h00PQI/AAAAAAAABho/LlJyfE2kMxE/s1600/10.gif.

ICA Istitute of contemporary art, Diller Scofidio Renfro. (n.d.). Retrieved December 1, 2014, from https://www.youtube.com/watch?v=8-mMzV9qPYs.

International Building Code. (2009). Soils and Foundations. Retrieved November 30, 2014, from http://earthquake.usgs.gov/earthquakes/states/massachusetts/hazards.php.

Nichols, Anne. (2014). Applied Architectural Structures Course Note Set.

Phipps, Donald. (1962). The Geology of the Unconsolidated Sediments of Boston Harbor. Massachusetts. Massachusetts Institute of Technology.

Schodek, D., & Bechthold, M. (n.d.). Structures (Seventh ed., p. 161). Pearson.

Schulte, M. and Tavolaro, M. (March 2008). Reaching Out. Civil Engineering, 78, 3, p. 44-51.

Soil Mechanics Network Classroom. Element Stress Analysis. Retrieved November 30, 2014, from http://earthquake.usgs.gov/earthquakes/states/massachusetts/hazards.php.

Tavolaro, M. (2008, March 1). Reaching Out. Civil Engineering, 44-51.

U.S. Geological Survey. (2014). 2014 Seismic Hazard Map. Retrieved November 30, 2014, from http://earthquake.usgs.gov/earthquakes/states/massachusetts/hazards.php.